324 research outputs found

    Hemihelical local minimizers in prestrained elastic bi-strips

    Full text link
    We consider a double layered prestrained elastic rod in the limit of vanishing cross section. For the resulting limit Kirchoff-rod model with intrinsic curvature we prove a supercritical bifurcation result, rigorously showing the emergence of a branch of hemihelical local minimizers from the straight configuration, at a critical force and under clamping at both ends. As a consequence we obtain the existence of nontrivial local minimizers of the 33-d system.Comment: 16 pages, 2 figure

    Hardness of MSA with Selective Column Scoring

    Get PDF
    Multiple Sequence Alignment (MSA for short) is a well known problem in the field of computational biology. In order to evaluate the quality of a solution, many different scoring functions have been introduced, the most widely used being the Sum-of-pairs score (SP-score). It is known that computing the best MSA under the SP-score measure is NP-hard. In this paper, we introduce a variant of the Column score (defined in Thompson et al. 1999), which we refer to as Selective Column score: Given a symbol a ∈ ÎŁ, the score of the i-th column is one if and only if all symbols of the same column are a, and otherwise zero. The acolumn score of an alignment is then the number of columns made of only character a. We show that finding the optimal MSA under the Selective Column Score is NP-hard for all alphabets of size |ÎŁ| ≄ 2 by reducing from MIN-2-SAT

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),
,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S⊆VS\subseteq V such that every vertex vv in V∖SV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page

    Normal, Abby Normal, Prefix Normal

    Full text link
    A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number pnw(n)pnw(n) of prefix normal words of length nn, showing that pnw(n)=Ω(2n−cnln⁥n)pnw(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right) for some cc and pnw(n)=O(2n(ln⁥n)2n)pnw(n) = O \left(\frac{2^n (\ln n)^2}{n}\right). We introduce efficient algorithms for testing the prefix normal property and a "mechanical algorithm" for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes to stay normal but Bob wants to drive her "abnormal" -- we discuss which parameter settings allow Alice to succeed.Comment: Accepted at FUN '1

    Parameterized Inapproximability of Target Set Selection and Generalizations

    Full text link
    In this paper, we consider the Target Set Selection problem: given a graph and a threshold value thr(v)thr(v) for any vertex vv of the graph, find a minimum size vertex-subset to "activate" s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex vv is activated during the propagation process if at least thr(v)thr(v) of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions ff and ρ\rho this problem cannot be approximated within a factor of ρ(k)\rho(k) in f(k)⋅nO(1)f(k) \cdot n^{O(1)} time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimization versions of the problem for which we prove similar hardness results

    Negative-Pressure Ventilation in Neuromuscular Diseases in the Acute Setting

    Get PDF
    Mechanical ventilation started with negative-pressure ventilation (NPV) during the 1950s to assist patients with respiratory failure, secondary to poliomyelitis. Over the years, technological evolution has allowed for the development of more comfortable devices, leading to an increased interest in NPV. The patients affected by neuromuscular diseases (NMD) with chronic and acute respiratory failure (ARF) may benefit from NPV. The knowledge of the available respiratory-support techniques, indications, contraindications, and adverse effects is necessary to offer the patient a personalized treatment that considers the pathology's complexity

    Algorithms for Jumbled Pattern Matching in Strings

    Full text link
    The Parikh vector p(s) of a string s is defined as the vector of multiplicities of the characters. Parikh vector q occurs in s if s has a substring t with p(t)=q. We present two novel algorithms for searching for a query q in a text s. One solves the decision problem over a binary text in constant time, using a linear size index of the text. The second algorithm, for a general finite alphabet, finds all occurrences of a given Parikh vector q and has sub-linear expected time complexity; we present two variants, which both use a linear size index of the text.Comment: 18 pages, 9 figures; article accepted for publication in the International Journal of Foundations of Computer Scienc

    Influence Diffusion in Social Networks under Time Window Constraints

    Full text link
    We study a combinatorial model of the spread of influence in networks that generalizes existing schemata recently proposed in the literature. In our model, agents change behaviors/opinions on the basis of information collected from their neighbors in a time interval of bounded size whereas agents are assumed to have unbounded memory in previously studied scenarios. In our mathematical framework, one is given a network G=(V,E)G=(V,E), an integer value t(v)t(v) for each node v∈Vv\in V, and a time window size λ\lambda. The goal is to determine a small set of nodes (target set) that influences the whole graph. The spread of influence proceeds in rounds as follows: initially all nodes in the target set are influenced; subsequently, in each round, any uninfluenced node vv becomes influenced if the number of its neighbors that have been influenced in the previous λ\lambda rounds is greater than or equal to t(v)t(v). We prove that the problem of finding a minimum cardinality target set that influences the whole network GG is hard to approximate within a polylogarithmic factor. On the positive side, we design exact polynomial time algorithms for paths, rings, trees, and complete graphs.Comment: An extended abstract of a preliminary version of this paper appeared in: Proceedings of 20th International Colloquium on Structural Information and Communication Complexity (Sirocco 2013), Lectures Notes in Computer Science vol. 8179, T. Moscibroda and A.A. Rescigno (Eds.), pp. 141-152, 201

    Longest Common Abelian Factors and Large Alphabets

    Get PDF
    Two strings X and Y are considered Abelian equal if the letters of X can be permuted to obtain Y (and vice versa). Recently, Alatabbi et al. (2015) considered the longest common Abelian factor problem in which we are asked to find the length of the longest Abelian-equal factor present in a given pair of strings. They provided an algorithm that uses O(σn2) time and O(σn) space, where n is the length of the pair of strings and σ is the alphabet size. In this paper we describe an algorithm that uses O(n2log2nlog∗n) time and O(nlog2n) space, significantly improving Alatabbi et al.’s result unless the alphabet is small. Our algorithm makes use of techniques for maintaining a dynamic set of strings under split, join, and equality testing (Melhorn et al., Algorithmica 17(2), 1997)

    Two examples of minimal Cheeger sets in the plane

    Get PDF
    We construct two minimal Cheeger sets in the Euclidean plane, i.e., unique minimizers of the ratio \u201cperimeter over area\u201d among their own measurable subsets. The first one gives a counterexample to the so- called weak regularity property of Cheeger sets, as its perimeter does not coincide with the 1-dimensional Hausdorff measure of its topological boundary. The second one is a kind of porous set, whose boundary is not locally a graph at many of its points, yet it is a weakly regular open set admitting a unique (up to vertical translations) nonparametric solution to the prescribed mean curvature equation, in the extremal case corresponding to the capillarity for perfectly wetting fluids in zero gravity
    • 

    corecore